On the sunflower bound for k-spaces, pairwise intersecting in a point

نویسندگان

چکیده

A t-intersecting constant dimension subspace code C is a set of k-dimensional subspaces in projective space \(\mathrm {PG}(n,q)\), where distinct intersect exactly t-dimensional subspace. classical example such the sunflower, all pass through same t-space. The sunflower bound states that if \(|C| > \left( \frac{q^{k + 1} - q^{t 1}}{q \right) ^2 1\). In this article we will look at case \(t=0\) and improve for \(q\ge 9\): \(\mathcal {S}\) k-spaces {PG}(n,q), q\ge 9\), pairwise intersecting point \(|\mathcal {S}|> \frac{2}{\root 6 \of {q}}+\frac{4}{\root 3 {q}}- \frac{5}{\sqrt{q}}\right) 1}{q 1}\right) ^2\).

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indicator of $S$-Hausdorff metric spaces and coupled strong fixed point theorems for pairwise contraction maps

In the study of fixed points of an operator it is useful to consider a more general concept, namely coupled fixed point. Edit In this paper, by using notion partial metric, we introduce a metric space $S$-Hausdorff on the set of all close and bounded subset of $X$. Then the fixed point results of multivalued continuous and surjective mappings are presented. Furthermore, we give a positive resul...

متن کامل

On pairwise weakly Lindelof bitopological spaces

In the present paper we introduce and study the notion of pairwise weakly Lindelof bitopological spaces and obtain some results. Further, we also study the pairwise weakly Lindelof subspaces and subsets, and investigate some of their properties. It was proved that a pairwise weakly Lindelof property is not a hereditary property.

متن کامل

The extension of quadrupled fixed point results in K-metric spaces

Recently, Rahimi et al. [Comp. Appl. Math. 2013, In press] defined the concept of quadrupled fied point in K-metric spaces and proved several quadrupled fixed point theorems for solid cones on K-metric spaces. In this paper some quadrupled fixed point results for T-contraction on K-metric spaces without normality condition are proved. Obtained results extend and generalize well-known comparable...

متن کامل

Kite-designs intersecting in pairwise disjoint blocks

A kite-design of order n is a decomposition of the complete graph Kn into kites. Such systems exist precisely when n ≡ 0, 1 (mod 8). Two kite systems (X,K1) and (X,K2) are said to intersect in m pairwise disjoint blocks if |K1∩K2| = m and all blocks in K1∩K2 are pairwise disjoint. In this paper we determine all the possible values of m such that there are two kite-designs of order n intersectin...

متن کامل

On the Richter-Thomassen Conjecture about Pairwise Intersecting Closed Curves

A long standing conjecture of Richter and Thomassen states that the total number of intersection points between any n simple closed Jordan curves in the plane, so that any pair of them intersect and no three curves pass through the same point, is at least (1− o(1))n. We confirm the above conjecture in several important cases, including the case (1) when all curves are convex, and (2) when the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Designs, Codes and Cryptography

سال: 2021

ISSN: ['0925-1022', '1573-7586']

DOI: https://doi.org/10.1007/s10623-021-00949-6